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Uses of IMPROVE Monitoring Data

In the Regional Haze Rule

 IMPROVE Network has 110 particle speciation
monitoring sites that nominally represent 155
visibility-protected class | areas

. Each site collects every-third-day samples of
s for gravimetric and compositional analysis
ancl2 PM,, for gravimetric analysis

* Major particle components are used to estimate
current haze levels (used to establish baseline
conditions and to track trends)

 All components are used to help identify the
sources (or source types & regions) that
contribute to haze



Haleakula and Hawaii Volcano National Park Monitoring Sites




Haze Indices

e Light extinction (Mm-1) — loss of light per
unit distance due to scattering &

absorption (directly related to aerosol
concentration)

e Visual range (km) — largest distance that
a suitable object can be seen (inversely
proportional to light extinction)

 Deciview haziness index (dv) — uniform

with respect to perceived haze changes
(logarithmic transformation of light extinction)



Haze Levels from IMPROVE
Network Particle Speciation Data

« Light extinction associated with each of the major
particle components is the component concentration
times an extinction efficiency (efficiency depends on the
component and the relative humidity)

 Total light extinction is the sum of the particle component
extinction values plus about 10Mm-! for molecular
scattering of clean air

* The six major particle components — typical extinction
efficiencies are:
— Fine (PM, ;) ammonium sulfate — 3m?/g (grows with humidity)
— Fine ammonium nitrate — 3m?/g (grows with humidity)
— Fine organic compounds — 4m?/g
— Fine elemental carbon — 10m?/g
— Fine crustal compounds — 1m?/g
— Coarse (PM 4, 5) mass — 0.6me/g
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Growth curve used for ammonium sulfate and ammonium nitrate
make them much for more efficient at high relative humidity.
(growth for relative humidity greater than 95% is held constant)



Hawalil IMPROVE Monitoring Site

Hawaii Volcano
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Hawaii Volcano — 77Mm-1

Haleakula — 36Mm-1
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Haze & Ammonium Sulfate on Worst Haze Days for 2003 Hawaii Compared to Lower 48

Hawaii Volcano — 8.1ug/m3

Haleakula — 3.4pg/m3
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Hawaii Volcano IMPROVE Aerosol Extinction (2001 -2002)
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SO, Pollution Rose & Wind Frequency
for Visitor Center/IMPROVE Site for 2002

Hawaii Volcano Map
from NPS Alert web site for 9:00am 4/7/05 \
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Ammonium Sulfate Sulfur (ug/m3)

Hawalii Volcano Particulate vs Gaseous Sulfur
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Haleakula s W
IMPROVE o) ks, L
Monitoring e Pa o
Site on Maui | [hi%

Site is about 3
miles NW of the
Park boundary
at an elevation
of 3800’

Park elevation
range is 0’ to
10,023
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Hawaii Volcano Plume is Still Intense Hundreds of Mlles from its Source — Satellite Image
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Sulfate Concentrations at the Two Hawaii IMPROVE Sites

25
—a— HAVO1 .
——HALE1 m
20 -
[ |
[ ]
15 -

0 : : T

Consistent Consistent N
I

trade winds e winds
l" ‘ ‘ i l
\ (AN 4“‘_‘ A , [ ,
Dot ettt By

\
B A1 4
O | d_\ u W " - L ’_v
12/25/2001 4/4/2002 7/13/2002 10/21/2002 1/29/2003 5/9/2003 8/17/2003 11/25/2003
—

Interesting
period




Ammonium Sulfate for Hawaii IMPROVE Sites
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Dates

_Period with trajectory analysis




Source * at 1943 N 15526 W

Source * at 1943 N 15526 W

24-hour Forward Trajectories from the Volcano (starting mid-day Hawaii time)

NOAA HYSPLIT MODEL
Forward trajectories starting at 00 UTC 15 Oct 03
CDC1 Meteorological Data

NOAA HYSPLIT MODEL
Forward trajectories starting at 00 UTC 16 Oct 03
CDC1 Meteorological Data

Low sulfate at
both sites for

10/15 sample
period

Source * at 1943 N 15526 W
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Source * at 1943 N 15526 W

NOAA HYSPLIT MODEL
Forward trajectories starting at 00 UTC 17 Oct 03
CDC1 Meteorological Data
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NOAA HYSPLIT MODEL
Forward trajectories starting at 00 UTC 18 Oct 03
CDC1 Meteorological Data




Source * at 1943 N 15526 W

Source * at 1943 N 15526 W

NOAA HYSPLIT MODEL
Forward trajectories starting at 00 UTC 19 Oct 03
CDC1 Meteorological Data
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HAVO for
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NOAA HYSPLIT MODEL
Forward trajectories starting at 00 UTC 20 Oct 03
CDC1 Meteorological Data
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Low for both
sites for Oct.
21 sample
period

Source * at 1943 N 15526 W

Source * at 1943 N 15526 W

NOAA HYSPLIT MODEL
Forward trajectories starting at 00 UTC 21 Oct 03
CDC1 Meteorological Data
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NOAA HYSPLIT MODEL
Forward trajectories starting at 00 UTC 22 Oct 03
CDC1 Meteorological Data
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Source * at 1943 N 15526 W

Source * at 1943 N 15526 W

NOAA HYSPLIT MODEL
Forward trajectories starting at 00 UTC 23 Oct 03
CDC1 Meteorological Data

Source * at 1943 N 15526 W
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Forward trajectories starting at 00 UTC 24 Oct 03
CDC1 Meteorological Data
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Source * at 1943 N 15526 W

NOAA HYSPLIT MODEL
Forward trajectories starting at 00 UTC 25 Oct 03
CDC1 Meteorological Data

NOAA HYSPLIT MODEL
Forward trajectories starting at 00 UTC 26 Oct 03

CDC1 Meteorological Data
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Source * at 1943 N 15526 W

Source * at 1943 N 15526 W

NOAA HYSPLIT MODEL
Forward trajectories starting at 00 UTC 27 Oct 03
CDC1 Meteorological Data
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NOAA HYSPLIT MODEL
Forward trajectories starting at 00 UTC 28 Oct 03
CDC1 Meteorological Data

Highest at both
sites for Oct. 27
sample period
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Source * at 1943 N 15526 W

NOAA HYSPLIT MODEL
Forward trajectories starting at 00 UTC 29 Oct 03
CDC1 Meteorological Data
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Source * at 1943 N 15526 W

Source * at 1943 N 15526 W

NOAA HYSPLIT MODEL
Forward trajectories starting at 00 UTC 31 Oct 03
CDC1 Meteorological Data

26

-164 -154

NOAA HYSPLIT MODEL
Forward trajectories starting at 00 UTC 01 Nov 03
CDC1 Meteorological Data
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High at both
sites for Oct.
30 sample
period.

~

Typical trade
winds produce L
trajectories like
these for many
of the following
days when
sulfate levels
are low at both
monitoring
sites.
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e This analysis

demonstrates that volcanic

sulfate is likely impacting
haze on at least some of
the worst haze days for
Haleakula.

e How much of the
Haleakula sulfate is
caused by the volcano?




Positive Matrix Factorization

 PMF is a statistical method that identifies a user
specified number of source profiles (i.e. relative
composition particle species for each source)
and source strengths for each sample period
that reduce the difference between measured
and PMF fitted PM,, . mass concentration

e |n matrix notation,
X=GF+E

where X is the matrix of measured composition
for each sample period, F is the source profile, G
IS the source strength or factor scores for each
sample period, and E is the residual or error
matrix.




PMF application to Hawalil
IMPROVE Particle Speciation Data

» All available PM, . speciation data for both
sites (>2 years each) are used together In
the PMF to explain measured PM,, - mass

e Six factors seemed to separate reasonably
explained source factors

e Multiple linear regression was used to
explain coarse mass using the six PMF
factors
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Six Source Profiles from Hawaii PMF Analysis

#1, Sea salt
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#2, Volcano sulfate
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#3, Dust
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Coarse Mass to PM, - Ratios
(Based on Multiple Linear Regression of Coarse Mass on the Factor Scores)
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Measured vs. Calculated PM2.5

Measured PM2.5
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This shows that the 6 PMF factors provide a good fit to the PM, . measurements.




Contributions to PM, c by Source Factors

All Days Worst 20% Haze Days Site
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Contributions of Source Factors to PM2.5 in 20% Worst Days of 2003
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PMF Next Steps

o Assess credibility of the non-volcano factors for
Haleakula

— Is the smoke factor elevated during known burning
events?

— Is the dust factor primarily local emission activities
&/or high winds, or global dust impacts?

— What sources are associated with the nitrate (#5) and
the sulfate/nitrate (#6) factors?

o Incorporate coarse mass & convert factors to
contribution to light extinction for both monitoring
sites
— Want to separate coarse mass from local man-made

activities from Asian dust, sea salt, & other natural
sources

— Need to weigh emissions control priorities based on
haze contributions



Local verses Global OC/EC Impacts
(a proposed conceptual model)

e Because Hawaili is on islands in the middle of
the Pacific Ocean

— All the fine OC and EC is either local or global (there
IS some small amount of oceanic OC)

— Global OC/EC probably from large biogenic fires
should affect both Hawali sites to the same extent,

most of the time
— Local OC/EC can affect one site but probably not the
other site

* Differences between the two sites for fine soill
and coarse mass should be an indicator of local
impact

* When both sites measure relatively high levels
global dust is a likely explanation



HALE-HAVO Elemental Carbon HALE-HAVO Organic Carbon Mass
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Elemental Carbon B Hawaii Volcano

Organic Carbon (ug/m3)
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Elemental Carbon (ug/m3)
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Haleakula Elemental Carbon vs Organic Carbon Mass
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* The ratio of elemental
carbon to organic carbon at
Haleakula is larger than at
Hawaii Volcano.

» Also the correlation is much
stronger at Haleakula than at
Hawali Volcano.

» Haleakula is expected to
have smoke and other
combustion source impacts
that would provide both
organic and elemental carbon.

* |ts seems that Hawaii
Volcano must have some local
source contributing organic
carbon with little or no
elemental carbon (e.g.
secondary organics)



Summary

The volcanic emissions of sulfate dominates the
haze measured at Hawail Volcano National Park

It is also the single largest source of worst haze
conditions at Haleakula National Park

There are other sources of haze that are
significantly contributing on worst haze days at
Haleakula

— PMF analysis indicates that smoke, dust and non-
volcanic sulfur and nitrate sources are important

— These need to be better understood and tied to
specific sources or source activities to be useful

More assessment work is needed and
suggestions are welcome.



Causes of Haze Assessment
--Nation-Wide--

e Data analysis similar to that done for
Hawail’s two visibility-protected areas and
regional scale air quality modeling is being
conducted by Regional Planning
Organizations for all such areas to support
development of Regional Haze State
Implementation Plans due in 2007



